Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks
نویسندگان
چکیده
منابع مشابه
Dynamic recurrent neural networks
We survey learning algorithms for recurrent neural networks with hidden units and attempt to put the various techniques into a common framework. We discuss fixpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non-fixpoint algorithms, namely backpropagation through time, Elman's history cutoff nets, and Jordan's output feedback architecture. Fo...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Recurrent Neural Networks: Associative Memory and Optimization
Due to feedback connections, recurrent neural networks (RNNs) are dynamic models. RNNs can provide more compact structure for approximating dynamic systems compared to feedforward neural networks (FNNs). For some RNN models such as the Hopfield model and the Boltzmann machine, the fixed-point property of the dynamic systems can be used for optimization and associative memory. The Hopfield model...
متن کاملProjective synchronization for fractional neural networks
In this paper, the global projective synchronization of fractional-order neural networks is investigated. First, a sufficient condition in the sense of Caputo's fractional derivation to ensure the monotonicity of the continuous and differential functions and a new fractional-order differential inequality are derived, which play central roles in the investigation of the fractional adaptive contr...
متن کاملNeural Networks for Nonlinear Fractional Programming
This paper presents a neural network for solving non-linear minimax multiobjective fractional programming problem subject to nonlinear inequality constraints. Neural model is designed for optimization with constraints condition. Methodology is based on the lagrange multiplier with saddle point optimization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2017
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2016.2582512